Preliminary communication

PHOTOCHEMICAL SYNTHESIS, REACTIVITY, AND ELECTROCHEMICAL PROPERTIES OF $[CpFeP_2L]^+$ CATIONS; $(Cp = C_5H_5, C_5Me_5;$ $L = CO vs. CH_3CN; P = PHOSPHINE OR PHOSPHITE)$

JAIME RUIZ^{ab}, ENRIQUE ROMAN^{*a} and DIDIER ASTRUC^{*b}

^a Pontifica Universidad Catolica de Chile, Facultad de Quimica, Casilla 6177, Santiago (Chile)

^b Laboratoire de Chimie Organique et Organométallique, UA CNRS No. 35, Université de Bordeaux I, 351 Cours de la Libération 33405 Talence Cédex (France)

(Received September 10th, 1986)

Summary

Photolytic replacement of the arene ligand in the cations $[Cp^*Fe(p-xylene)]^+$ ($Cp^* = C_5Me_5$) by P(OMe)₃ ligands is only possible when a sensitizer (acetone or anthracene) is present and leads to $Cp^*Fe^+{P(OMe_3)}_3$. Photoextrusion of one phosphite ligand from $[C_5R_5Fe{P(OMe_3)}_3]^+$ (R = H, Me) or of the carbonyl from $[C_5R_5Fe(P \cap P)(CO)]^+$ (R = H, Me; $P \cap P = dppm$, dppe) in CH₃CN leads to CH₃CN complexes which are reversibly oxidized.

Cations of the type $[CpFeL^{1}L^{2}L^{3}]^{+}$ ($Cp = C_{5}H_{5}$ or $C_{5}Me_{5}$) * are accessible by photolysis of the cation $[C_{5}H_{5}Fe(Arene)]^{+}$ [1a], or $[C_{5}Me_{5}Fe(CO)_{3}]^{+}$ [1b], but the photochemical behaviour of the cations $[Cp^{*}Fe(Arene)]^{+}$, $[Cp^{*}FeP_{2}(CO)]^{+}$ and $[Cp^{*}FeL_{3}]^{+}$ complexes is not known [2]. We report here several original photochemical synthetic and thermal conversions of these compounds together with related electrochemical behaviour.

We find that: (i) Whereas $[CpFe(Arene)]^+$ cations under irradiation readily undergo arene exchange in the presence of another arene [1] or arene replacement by three identical or different ligands, the analogous species $[Cp^*Fe(Arene)]^+$ are resistant to photolysis in CH₃CN. However, if the irradiation of these species are carried out in the presence of acetone or anthracene as sensitizer, exchange proceeds well [3]:

$$\left[\operatorname{Cp}^{\star}\operatorname{Fe}(\operatorname{Arene})\right]^{+}\operatorname{PF}_{6}^{-} \xrightarrow[\operatorname{CH}_{3}\operatorname{COCH}_{3}]{} \left[\operatorname{Cp}^{\star}\operatorname{Fe}\left\{(\operatorname{OMe})_{3}\right\}_{3}\right]\left[\operatorname{PF}_{6}\right]$$
(1)

(arene = p-xylene: visible light, 1 week; yields: 50-60%)

* Unless specified otherwise $Cp = C_5H_5$, $Cp^* = C_5Me_5$. The counter anion is always PF_6^- .

0022-328X/87/\$03.50 © 1987 Elsevier Sequoia S.A.

The new complex $[Cp^*Fe{P(OMe)_3}_3][PF_6]$ can also be obtained thermally by treatment of $[Cp^*Fe(acac)]$ with $P(OMe)_3$ in THF and acetic acid [4]:

$$Cp^{\star}Fe(acac) \xrightarrow[(2)]{\text{THF, CH}_3CO_2H, 20^{\circ}C} [Cp^{\star}Fe\{P(OMe)_3\}_3][PF_6] + acacH$$
(2)

(ii) Monocarbonyl compounds [CpFeL₂CO][PF₆] can be photolyzed in CH₃CN to give [CpFeL₂(η^1 -NCCH₃)][PF₆] in acetonitrile. The reverse reaction is found to occur thermally at 20°C:

$$CH_{3}CN + [CpFeL_{2}(CO)]^{+} \xrightarrow{h\nu, (\lambda \ge 400 \text{ nm}), CH_{3}CN}_{\sim 5 \text{ atm CO}, 20^{\circ}C, CH_{2}Cl_{2}} [CpFeL_{2}(NCCH_{3})]^{+} + CO$$
(3)

 $(L = P(OMe)_3, dppm or dppe)$

(iii) $[CpFe{P(OMe)_3}_3]^+$ can be photolyzed in CH_3CN to give $[CpFe{P(OMe)_3}(NCCH_3)]^+$; the latter reacts in the dark with $P(OMe)_3$ in CH_2Cl_2 to regenerate the tris(trimethylphosphite) derivative:

$$\left[\operatorname{CpFe}\left\{P(OMe)\right\}_{3}\right]^{+} \xrightarrow[P(OMe)_{3}, \operatorname{CH}_{2}\operatorname{Cl}_{2} \text{ in the dark}} \left[\operatorname{CpFe}\left\{P(OMe)_{3}\right\}_{2}(\operatorname{NCCH}_{3})\right]^{+} + P(OMe)_{3} \quad (4)$$

(iv) The piano-stool cationic complexes are reversibly oxidized to dications at potentials ranging from +0.6 to +1.2 V/SCE, [5], but the anodic oxidation of the monocarbonyl compounds is only reversible for the Cp^{*} (not the parent Cp) species.

$$\left[\operatorname{CpFeL^{1}L^{2}L^{3}}\right]^{+} \xrightarrow[+1e^{-}]{} \left[\operatorname{CpFeL^{1}L^{2}L^{3}}\right]^{2+}$$
(5)

(v) The single carbonyl ligand plays the role of an electron sink in these complexes: comparisons of the multinuclear NMR, electrochemical, electronic spectra, and Mössbauer data [7] (Table 1), all indicate a much higher electron density of the iron moiety when no back-bonding is possible (CH_3CN complexes).

(vi) The reduction of $[CpFeP_2CO]^+ PF_6^-$ in Na/Hg leads to the known dimers $[\{CpFe(CO)\}_2-\mu-P_2]$ [6] whereas the permethyl Cp analogues $[Cp^*FeP_2CO][PF_6]$ do not dimerize upon reduction; in this latter case, the 19-electron or 17-electron compounds give iron hydrides by H-abstraction from the hydride substrate or the solvent [8]:

$$\left[CpFeP_{2}(CO) \right]^{+} \xrightarrow{Na/Hg, 20^{\circ}C}_{THF, Ar} \left[CpFeP_{2}(CO) \right]$$

$$P_{2} + \left[\left\{ CpFe(CO) \right\}_{2} - \mu - P_{2} \right] \xleftarrow{slow dimerization}_{C_{5}H_{5} \text{ series}} CpFeP_{2}(CO) \xrightarrow{D_{2}O \text{ or } \text{LiAlD}_{4}}_{C_{5}Me_{5} \text{ series}} \right]$$

$$\left[Cp^{*}Fe(\eta^{1}-P_{2})(CO)D \right]$$

$$(P = \text{diphos, dppm})$$

$$(6)$$

C14

Compound	¹ H NMR ^a (δ (ppm), Cp signal)	$E_{1/2} \text{ (oxidation) (V) (SCE)}^{d}$ $[Fe^{II}]^{1+} \rightleftharpoons [Fe^{III}]^{2+}$
$\frac{[CpFe{P(OMe)_3}_2(CO)][PF_6]^{b}}{[Compared COMe)_3}$	5.00	no oxid. $\leq +1.50V$
$[CpFe{P(OMe)_3}_2(\eta^1-NCCH_3)][PF_6]^c$	4.67	0.87
$[CpFe{P(OMe)_3}_3][PF_6]^{b}$	4.87	1.15
$[Cp^*Fe{P(OMe)_3}_3][PF_6]$	-	0.834
$[Cp^{\star}Fe{P(OMe)_{3}}_{2}(CO)][PF_{6}]$	-	1.5 (irreversible)
$[Cp^*Fe{P(OMe)_3}_2(\eta^1-NCCH_3)][PF_6]$	-	0.585
[CpFe(diphos)(CO)][PF ₆] ^b	5.08	no oxid. $\leq +1.50V$
$[CpFe(diphos)(\eta^1 - NCCH_3)[[PF_6]]^c$	4.29	0.66
$[CpFe(dppm)(CO)][PF_6]^{b}$	5.3	no oxid. $\leq +1.50$ V
$[CpFe(dppm)(\eta^1 - NCCH_3)][PF_6]^{b}$	4.62	0.61
[Cp*Fe(diphos)(CO)][PF ₆]	_	1.24 °
$[Cp^*Fe(diphos)(\eta^1-NCCH_3)][PF_6]$	-	0.466

TABLE 1 SELECTED DATA FOR $[Fe^{II}C_pL_2L']^+$ PF₆⁻ SALTS, $(C_p = C_5H_5, C_5Me_5)$

^a Brucker WM250 (¹H, ¹³C{¹H}) and Varian XL = 100 (¹H). ^b CD₃COCD₃. ^c CDCl₃. ^d 0.1 M n-Bu₄NBF₄, 10^{-3} M in complex (CH₃CN solvent). Pt electrode, E vs. SCE. ^e LiClo₄ 0.1 M.

The findings [7] reported mean that a study can be made of the potential of these systems for photochromism [9] and electrocatalysis [10].

Acknowledgement. This work was supported in part by the Dirección de Investigación, Pontificia Universidad Católica de Chile (DIUC Grant No. 32-82).

References and Notes

- (a) T.P. Gill and K.R. Mann, Inorg. Chem., 19 (1980) 3007; J. Organomet. Chem., 216 (1981) 65; Organometallics, 1 (1982) 485; Inorg. Chem., 22 (1983) 1986; 23 (1984) 2633; (b) D. Catheline and D. Astruc, J. Organomet. Chem., 248 (1983) C9; 272 (1984) 417; Organometallics, 3 (1984) 1094.
- 2 $[Cp^*FeC_6H_6]^+$ was reported to be photostable in CH₃CN [1b].
- 3 (a) N.J. Turro, Modern Molecular Photochemistry, Menlo Packs, Calif. Benjamin/Cumming; 2nd edit., 1978; (b) [CpFeArene]⁺ cations photocatalyse the valence isomerization of hexamethyl Dewar benzene to hexamethylbenzene, a reaction which is also sensitized by anthracene and or acetone: E. Romań, S. Hernández and M. Barrera, Chem. Commun., (1984) 1067, and E. Román, M. Barrera and Ch. Gianotti, manuscript in preparation.
- 4 J. Ruíz, E. Bunel, J-M. Manriquez and E. Román unpublished results; for the synthesis and use of Cp*Fe(acac), see E. Bunel, L. Valle and J.M. Manriquez, Organometallics, 4 (1986) 1680.
- 5 Several neutral Fe^{II} compounds of CpFeP₂X type, (X = I, Cl) have been reported to undergo reversible anodic oxidation. P.M. Treichel and K.P. Wagner, J. Organomet. Chem., 86 (1975) C13; 174 (1979) 191.
- 6 (a) J.A. Ferguson and T.J. Meyer, Inorg. Chem., 11 (1972) 631; (b) R.J. Haines and A.L. Du Preez, J. Organomet. Chem., 21 (1970) 181; (c) M.L. Brown, J.L. Cramer, J.A. Ferguson, T.J. Meyer and N. Winterton, J. Am. Chem. Soc., 94 (1972) 8707.
- 7 C, H, P, Fe analyses (Centre d'Analyses, Vernaison, France), multinuclear NMR ¹H, ¹³C{H}, ³¹P{H}), infrared, electronic spectra, Mössbauer and electrochemical data consistent with the proposed structures, will be reported in the full paper.
- 8 D. Catheline, C. Lapinte and D. Astruc, Organometallics, 3 (1984) 817.
- 9 E. Román and D. Astruc, Bol. Soc. Chil. Quim., in press.
- 10 D. Astruc, Angew. Chem. Int. Ed. Engl., in press.